Product data sheet
Characteristics

ATV320U15N4B
Variable speed drive, Altivar Machine ATV320, $1.5 \mathrm{~kW}, 380 \ldots 500 \mathrm{~V}, 3$ phases, book

Discrete output type	Open collector DQ $+0 . .1 \mathrm{kHz} 30 \mathrm{~V}$ DC 100 mA Open collector DQ-0... 1 kHz 30 V DC 100 mA
Analogue input number	3
Analogue input type	Al1 voltage: $0 \ldots 10 \mathrm{~V}$ DC, impedance: 30 kOhm , resolution 10 bits AI2 bipolar differential voltage: +/- 10 V DC, impedance: 30 kOhm , resolution 10 bits Al3 current: $0 . . .20 \mathrm{~mA}$ (or $4-20 \mathrm{~mA}, \mathrm{x}-20 \mathrm{~mA}, 20-\mathrm{x} \mathrm{mA}$ or other patterns by configuration), impedance: 250 Ohm, resolution 10 bits
Analogue output number	1
Analogue output type	Software-configurable current AQ1: $0 \ldots 20 \mathrm{~mA}$ impedance 800 Ohm, resolution 10 bits Software-configurable voltage AQ1: $0 \ldots 10 \mathrm{~V}$ DC impedance 470 Ohm, resolution 10 bits
Relay output type	Configurable relay logic R1A 1 NO electrical durability 100000 cycles Configurable relay logic R1B 1 NC electrical durability 100000 cycles Configurable relay logic R1C Configurable relay logic R2A 1 NO electrical durability 100000 cycles Configurable relay logic R2C
Maximum switching current	```Relay output R1A, R1B, R1C on resistive load, cos phi = 1:3 A at 250 V AC Relay output R1A, R1B, R1C on resistive load, cos phi =1:3 A at 30 V DC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi =0.4 and L/R = 7 ms: 2 A at 250 V AC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi = 0.4 and L/R = 7 ms:2 A at 30 V DC Relay output R2A, R2C on resistive load, cos phi = 1:5 A at 250 V AC Relay output R2A, R2C on resistive load, cos phi=1:5 A at 30 V DC```
Minimum switching current	Relay output R1A, R1B, R1C, R2A, R2C: 5 mA at 24 V DC
Method of access	Slave CANopen
4 quadrant operation possible	True
Asynchronous motor control profile	Voltage/frequency ratio, 5 points Flux vector control without sensor, standard Voltage/frequency ratio - Energy Saving, quadratic U/f Flux vector control without sensor - Energy Saving Voltage/frequency ratio, 2 points
Synchronous motor control profile	Vector control without sensor
Maximum output frequency	0.599 kHz
Transient overtorque	170... 200 \% of nominal motor torque
Acceleration and deceleration ramps	Linear U S CUS Ramp switching Acceleration/deceleration ramp adaptation Acceleration/deceleration automatic stop with DC injection
Motor slip compensation	Automatic whatever the load Adjustable 0... 300 \% Not available in voltage/frequency ratio (2 or 5 points)
Switching frequency	2... 16 kHz adjustable $4 . . .16 \mathrm{kHz}$ with derating factor
Nominal switching frequency	4 kHz
Braking to standstill	By DC injection
Brake chopper integrated	True
Line current	6.5 A at 380 V (heavy duty) 4.9 A at 500 V (heavy duty)
Maximum input current	6.5 A
Maximum output voltage	500 V
Apparent power	4.2 kVA at 500 V (heavy duty)
Network frequency	$50 \ldots 60 \mathrm{~Hz}$
Relative symmetric network frequency tolerance	5 \%
Prospective line Isc	5 kA
Base load current at high overload	1.5 A
Power dissipation in W	Fan: 56.0 W at 380 V , switching frequency 4 kHz
With safety function Safely Limited Speed (SLS)	True

With safety function Safe brake management (SBC/SBT)	False
With safety function Safe Operating Stop (SOS)	False
With safety function Safe Position (SP)	False
With safety function Safe programmable logic	False
With safety function Safe Speed Monitor (SSM)	False
With safety function Safe Stop 1 (SS1)	True
With sft fct Safe Stop 2 (SS2)	False
With safety function Safe torque off (STO)	True
With safety function Safely Limited	False
Position (SLP)	False
With safety function Safe Direction (SDI)	Input phase breaks: drive Orotection type Overcurrent between output phases and earth: drive Short-circuit brotection: drive Thermal protection: drive phases: drive WidthHeight 325.0 mm Depth 245.0 mm Net weight 2.5 kg

Environment

Operating position	Vertical +/- 10 degree
Product certifications	CE ATEX NOM GOST EAC RCM KC
Marking	CE ATEX UL CSA EAC RCM
Electromagnetic compatibility	Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Voltage dips and interruptions immunity test conforming to IEC 61000-4-11
Environmental class (during operation)	Class 3C3 according to IEC 60721-3-3 Class 3S2 according to IEC 60721-3-3
Maximum acceleration under shock impact (during operation)	$150 \mathrm{~m} / \mathrm{s}^{2}$ at 11 ms
Maximum acceleration under vibrational stress (during operation)	$10 \mathrm{~m} / \mathrm{s}^{2}$ at $13 . . .200 \mathrm{~Hz}$
Maximum deflection under vibratory load (during operation)	1.5 mm at $2 \ldots 13 \mathrm{~Hz}$
Permitted relative humidity (during operation)	Class 3K5 according to EN 60721-3
Volume of cooling air	$9.4 \mathrm{~m} 3 / \mathrm{h}$
Overvoltage category	III
Regulation loop	Adjustable PID regulator
Speed accuracy	+/-10\% of nominal slip 0.2 Tn to Tn

Pollution degree	2
Ambient air transport temperature	$-25 \ldots . .70^{\circ} \mathrm{C}$
Ambient air temperature for operation	$-10 \ldots .50^{\circ} \mathrm{C}$ without derating
	$50 \ldots . .60^{\circ} \mathrm{C}$ with derating factor
Ambient air temperature for storage	$-25 \ldots .0^{\circ} \mathrm{C}$
Packing Units	PCE
Unit Type of Package 1	1
Number of Units in Package 1	2.386 kg
Package 1 Weight	8.2 cm
Package 1 Height	27.5 cm
Package 1 width	32 cm
Package 1 Length	P06
Unit Type of Package 2	24
Number of Units in Package 2	70.26 kg
Package 2 Weight	80 cm
Package 2 Height	80 cm
Package 2 width	60 cm
Package 2 Length	

Offer Sustainability

Sustainable offer status	Green Premium product
REACh Regulation	REACh Declaration
EU RoHS Directive	Pro-active compliance (Product out of EU RoHS legal scope) EU RoHS Declaration
Mercury free	Yes
RoHS exemption information	Yes
China RoHS Regulation	China RoHS declaration
Environmental Disclosure	Product Environmental Profile
Circularity Profile	End of Life Information
WEEE	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins
California proposition 65	WARNING: This product can expose you to chemicals including: Lead and lead compounds, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov
Upgradeability	Upgraded components available \quad ■

Bottom, Right and Front View

(1) Minimum value corresponding to thermal constraints.
(2) Optional GV2 circuit-breaker

NOTE: The product overall height dimension, including GV2 adapter and EMC plate mounted, becomes 424 mm (16.7 in.) instead of 325 mm (12.80 in.)

(1) Ground screw (HS type 2-5x12)

Diagram with Line Contactor

Connection diagrams conforming to standards ISO13849 category 1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1.

(1) Line choke (if used)
(2) Fault relay contacts, for remote signaling of drive status

Diagram with Switch Disconnect

Connection diagrams conforming to standards EN 954-1 category 1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1.

(1) Analog output
(2) Analog inputs
(3) Reference potentiometer (10 kOhm maxi)
(4) Digital inputs

The logic input switch (SW1) is used to adapt the operation of the logic inputs to the technology of the programmable controller outputs.
Switch SW1 set to "Source" position and use of the output power supply for the DIs.

ATV $320 \bullet \bullet \bullet$ ••B

Switch SW1 set to "Source" position and use of an external power supply for the DIs.

Switch SW1 set to "Sink Int" position and use of the output power supply for the DIs.

Switch SW1 set to "Sink Ext" position and use of an external power supply for the DIs.
ATV 320 ****B

Derating Curves

Derating curve for the nominal drive current (In) as a function of temperature and switching frequency (SF).

- $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C
… $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C
- $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ - Mounting type B and C

In: \quad Nominal Drive Current
SF : Switching Frequency

